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Abstract 
Global climate models project a continued increase of temperatures and changes in the spatial and 

temporal distribution of precipitation. These developments have been shown to potentially impact cocoa 

production at its most important origins. The prospect of reduced cocoa yields on existing plantations 

renewed concerns that prevailing cocoa demand could drive producers even deeper into forests in other 

regions. Thus, prioritization of adaptation strategies for cocoa production and ecosystem conservation 

efforts will benefit from a global intercomparison of climate change impacts.  

We modeled the global distribution of suitable climates for cocoa production under historic and future 

conditions. A database of cocoa occurrence locations and historic climate data was used to train the 

Random Forest classification algorithm. Model evaluation on historic data showed a high ability to 

correctly identify current production regions. The classifier was extrapolated on climate data from 

multiple global climate models for low, intermediate and high radiative forcing scenarios for mid and end 

of century projections.   

Across all cocoa origins decreases of climatic suitability were projected. We find that available area of 

high suitability will be diminished while area with low suitability scores may be increasingly available. 

Furthermore, we find that projected impacts will be unlikely to make major cocoa producing regions 

unsuitable altogether. These findings could be partially explained with the high uncertainty of 

precipitation projections of global climate models. Temperatures were found to rise beyond historically 

experienced levels with high certainty. Areas most likely to retain high suitability were found in 

proximity of forest reserves where precipitation is most likely to remain sufficiently high. Climate change 

is thus likely to cause additional challenges to the sector at global scale. Research should focus on the 

impacts of high temperatures on quality and vitality of the plant, and the management of increased 

drought risk. Furthermore, the implications of changed climate conditions for regional pest and disease 

patterns remain largely uncertain. 

We conclude that cocoa production will continue to threaten biodiverse forests across tropical countries. 

Cocoa production is a primary beneficiary of ecosystem services provided by resilient landscapes. 

Deforestation will exacerbate the effects of climate change by resulting in locally reduced precipitation, 

addition to emissions from land use change, and diminished barriers to pest and disease spread. Efforts to 

make cocoa deforestation free are therefore in the self-interest of the cocoa sector.  

Introduction 
It is virtually certain that global temperatures have increased by about 0.85°C during the period 1880–

2012. Global circulation models (GCMs) have projected the effects of continued emissions on the global 

climate, and an additional increase of 1.4–3.1°C by the end of this century was found to be likely (Stocker 

et al. 2013). There is increasing consensus that the risk of drought has increased over the past decades. 

GCMs were found to reproduce these trends and projected additional drought risk for the coming 

decades, either through decreased precipitation or increased evaporation (Dai 2013). 



The cocoa tree, Theobroma cacao L., originated from the wet forests of South America, very close to the 

equator. In its natural habitat, rainfall is heavy and the temperature is relatively uniform. High 

precipitation of about 1500 – 2000 mm well distributed throughout the entire year is considered optimal 

for the cocoa crop. However, in the major production regions in West Africa, production systems have 

been adapted to a weather pattern with one or two dry seasons per year. Months with less than 100 mm 

are considered dry months (Lass and Wood 1985), as little as 60 mm is tolerated. While a dry season 

induces uniform flowering, overall yields are higher without such a period (Zuidema et al. 2005). This 

may be associated with low assimilation rates caused by vapour pressure deficit in the dry season 

(Acheampong et al. 2013). In general, for optimal conditions, temperatures should be within 18°C and 

32°C for high assimilation rates (Almeida and Valle 2007). Temperatures below 10°C can be lethal (FAO 

2007). For maladapted genotypes, fruit size and bean quality may be affected by excessive growing 

season temperatures (Daymond and Hadley 2008). Heat has been shown to induce unfavourable root 

development (Sena Gomes and Kozlowski 1987). 

Some authors have specifically researched putative impacts of climate change in West Africa and 

concluded that negative impacts may be related to dry season precipitation (Schroth et al. 2016) and 

temperatures (Anim-Kwapong and Frimpong 2008; Schroth et al. 2016), or growing season 

evapotranspiration (Läderach et al. 2013). The extent of suitable climates for cocoa production (Läderach 

et al. 2013; Schroth et al. 2016) and yields (Anim-Kwapong and Frimpong 2008) were found to be 

reduced as a result of projected future conditions in these studies.  

It is thus likely that climate change will shape the future production of cocoa. The prospect of negative 

impacts on production in the main production regions has renewed concerns about cocoa production as a 

driver of deforestation (Ruf et al. 2015). The objective of this study is to compare the degree of climatic 

changes at potential cocoa growing locations to understand future deforestation threats. 

Data and Methods 
We modeled the global distribution of suitable climates for cocoa production under historic and future 

conditions. A database of cocoa occurrence locations and historic climate data was used to train the 

Random Forest classification algorithm. The classifier was extrapolated on climate data from multiple 

global climate models for low, intermediate and high radiative forcing scenarios for mid and end of 

century projections.   

Cocoa occurrence data 
We used data of the current distribution of T. cacao to characterize the climates that are suitable for 

cultivation. We assembled a global data set of cocoa occurrences with the objective to include all major 

climatic regions in which cocoa is produced (Figure 1). We reached out to stakeholders in West Africa, 

Asia, and South and Central America to request data contributions. Stakeholders included private sector 

actors, research institutions, certification programmes (e.g. Rainforest Alliance) and farmer organizations. 

We also used data from previous publications on the climate change impacts in West Africa (Läderach et 

al. 2013; Schroth et al. 2016), GBIF (Global Biodiversity Information Facility) (Global Biodiversity 

Information Facility 2015) and centroides of census units of the 2012 Censo Nacional Agropecuario, in 

which relevant cocoa quantities were reported (INEI 2012).  

The resulting raw databases included a total of 88857 cocoa occurrence locations. We reduced this initial 

dataset to unique occurrence pixels at 20 Arcmin (about 40 km at the equator) to eliminate bias from 

highly clustered occurrences. The final database included 1488 cocoa occurrence locations (Figure 1). 



 

Figure 1 Occurrence locations of cocoa production 

Climate data 
For the current climate (1950–2000), we used the WorldClim data set (Version 1.4) at 20 arc-minute 

resolution (Hijmans et al. 2005). Future climate data layers were generated by downscaling the native 

outputs of 10 GCM’s from the 5th assessment report for the representative concentration pathway (RCP) 

6.0 (Fujino et al. 2006) using the delta method (Ramirez and Jarvis 2010): The difference between model 

outputs for current conditions and the average for the period 2040 to –2069 (2050ies) was computed. The 

resulting layers were smoothed to a 20 ArcMin resolution and applied to the WorldClim layers for current 

climate. Potential evapotranspiration is considered a good proxy of vapour pressure (Allen et al. 1998) 

which may have direct effects on the cocoa tree (Mielke et al. 2005). We estimated potential 

evapotranspiration following Hargreaves and Samani (Hargreaves and Samani 1985) as recommended by 

the FAO (Allen et al. 1998). We derived 24 bioclimatic variables for current conditions using the 

WorldClim data and for future conditions using the CMIP5 data. 

Random Forest Classification 
We used the Random Forest (RF) (Breiman 2001) classifier in two distinct applications. (1) We initially 

used it to produce a dissimilarity measure to group occurrence locations into suitability clusters with 

similar climate characteristics in an unsupervised variation. (2) We used the RF classifier to classify 

climate data of current and future conditions into the resulting suitability types. Random Forests are 

machine learning classifiers that are formed by ensembles of classification trees. RF are very popular 

because of their efficiency on large datasets without overfitting. We used the randomForest package 

(Liaw and Wiener 2002) in the statistical software R (R Core Team 2014) that implements the RF 

approach. 

First, to determine distinct suitability zones for cocoa we used the RF classifier in unsupervised mode (Shi 
and Horvath 2006) to calculate dissimilarities based on the bioclimatic variables at cocoa locations. 

Clustering was performed using Ward hierarchical clustering using the dissimilarities as input. The 

number of clusters was determined based on visual inspection of a cluster dendrogram. Description of 

climate types was based on the difference of within cluster means to the global mean at all locations for 

selected climate variables.  

To train the RF classifier to recognize the resulting suitable climate zones the selected variables and the 

GPS data of the cocoa presences were joined and were used as an input into the model. In addition, a 

random background sample set of points not know to produce cocoa was drawn to characterize the 

general environment at a sampling ration of 2:1 background to occurrence locations. Each RF forest 

classifier was configured to create 200 decision trees, and to be replicated 5 times (‘forests’). In each 

repeat a different subset from the presence sample was drawn at the size equaling half the number of case 

in the smallest subgroup. Such reduction of ecological sampling bias has been shown to improve the 

capacity of niche based approaches to correctly predict species distributions (Varela et al. 2014). From 

this subset 80% were used for training, and 20% were used for evaluation.  



With this configuration and inputs, the model was extrapolated in two different ways. First, the modal 

classification of all RF trees was used to determine the distribution of climate classes under current and 

future climate conditions using all climate variables. Next, we used the percentage of votes by individual 

trees in the forests to evaluate the model agreement whether a location belongs to one of the suitable 

classes or the background class.  

We accounted for the possibility that unknown climate types may occur by including a novelty detection 

step in the data processing. Ensemble methods such as RF can provide a metric to measure proximity 

between samples (Zhou et al. 2015). For each sample from the spatial climate data that had to be 

evaluated we tested the frequency with which it ended in the same leaf node as other samples from the 

same class as would be expected from a reference case evaluation. If the test sample could not be clearly 

categorized we classified it as ‘novelty’. Finally, we separated the novelty class into likely suitable, and a 

likely unsuitable climate by comparison with the suitability score.  

Validation 
The current distribution was validated using the multiclass area under receiver operating characteristic 

curve (AUC) (Hand and Till 2001) as implemented in the R package “pROC” (Robin et al. 2011). The 

AUC assumes values 0 – 1. An AUC of 0.5 indicates that the performance was no better than random 

sampling, while 1.0 is perfect classification. This definition of the AUC measure can be extended to 

multiclass problems by averaging all pairwise AUC comparisons to a multiclass AUC (Hand and Till 
2001). 

Results 
We analyzed the impacts of climate change on cocoa in two ways. We first described the current 

distribution of climate types for cocoa production, and the change in future periods. Next, we assigned a 

suitability score that indicated how similar the climate at a grid cell was to climate at occurrence 

locations. 

Distribution of climate types 
Clustering the occurrence locations resulted in four distinct climate types (Figure 2). Cluster 1 was found 

to be distant from the other 3 clusters. Cluster 3 and 4 were most closely related. The resulting clusters 

were of similar sizes. Cluster 1 had 480 samples, cluster 2 408 samples, cluster 3 337 samples, and cluster 

4 263 samples. 

 

Figure 2 Cluster dendrogram of occurrence locations  

We described these clustered based on their climatic properties (Figure 3). We used climatic variables 

that describes the seasonality and extremes of temperature and precipitation. We summarized these 

properties relative to the other cocoa climate types (Table 1). 



 

Figure 3 Contrast plots of confidence intervals within clusters compared to the grand mean for selected bioclimatic 

variables. 

We labeled the clusters into climate types based on their geographic properties. Each cluster could 

typically be found in a certain cocoa region. We therefore assigned a symbol based on the representative 

region to the climate type (Table 1).   

Table 1 Clusters and climate type description 

CLUSTER SYMBOL TYPICAL REGION TEMPERATURE PRECIPITATION 

1 WA West Africa High Low, seasonal 

2 SLA Seasonal Latin 

America 

Average High, seasonal 

3 High Highlands Low Low 

4 Ama Amazon Even High 

Cluster 1 climate was found to cover most of the West Africa region and therefore labelled ‘WA’. 

Additional patches were found in Colombia’s Arauca region, and Central America’s Pacific coast Figure 

4. Cluster 2 covered the Central American Atlantic coast, most of Brazilian Amazonas basin, but also 

parts of the Congo Basin and the Philippines. These regions all exhibited some seasonality of 

precipitation, i.e. at least some months below 100mm rainfall. This climate type was therefore labeled 

Seasonal Latin America. Cluster 3 (‘Highlands’) was found in Central American highlands, along the 

Andes, Cameroon, highland East Africa and the high elevations of Sumatra. Finally, cluster 4 covered the 

upper Amazonas region, central Congo and most of Indonesia and labelled according to the origin of the 

cocoa tree ‘Amazon’. Novel climate type 1 covered the margins of cocoa type climates, large areas of the 

Congo basin, India and some regions in Indonesia. Novel climate 2 spanned large areas of Savanna 

climates in Brazil and Africa and the humid subtropical climates in Asia and Southern USA. 



 

Figure 4 Current distribution of climate types for cocoa production 

In the intermediate emissions scenario RCP 6.0 by the 2050 period the total area of suitable climate types 

was found to remain unchanged (Figure 5). Notable reductions of the ‘WA’ climate type were found in 

the Arauca region in Colombia and the margins of the West African cocoa belt. The ‘SLA’ climate 

expanded in the Congo region and in some parts of South East Asia. The ‘high’ climate type was reduced 

substantially by about 45%, while the ‘Ama’ and ‘Novel 1’ climates expanded in area Table 2.  

Table 2 Number of global grid cells of climate types in current and 2050s conditions (RCP 6.0) 

CLIMATE TYPE CURRENT 2050 % CHANGE 

UNSUITABLE 37899 37515 -1 

WA 793 710 -10 

SLA 2835 3114 10 

HIGH 1376 752 -45 

AMA 1858 1992 7 

N1 5657 6206 10 

N2 9442 9571 1 

 

Figure 5 2050s distribution of climate types for cocoa production in the RCP 6.0 scenario 



The multiclass AUC (.84) showed a good capacity of the classifier to differentiate the climate types.  

Distribution of suitability scores 
The suitability score was based on the number of trees across all forests that cast a vote for a cocoa 

climate type, not considering the novel climate types. Thus, the score can be interpreted as a measure of 

similarity of the climate at a grid cell to climate at known cocoa occurrences locations. The score was 

truncated at 37%, the value of the 1st percentile at known occurrences. Thus 99% of occurrences had a 

suitability score of 37% and higher. 90% of locations had a score of 70% and higher.   

Under current climate conditions highly suitable climate closely resembled the distribution of the 

occurrence location database (Figure 6). Highly suitable areas were found in Central America, the 

Amazonas region, West Africa and South East Asia. Suitability scores were comparatively lower in the 

Congo Basin and India. 

 

Figure 6 Suitability score for cocoa production under current climate conditions. 

In the intermediate emissions scenario by the 2050 period the main cocoa regions received a lower share 

of suitable votes than under current conditions. On the other hand, potentially suitable regions without 

major cocoa production were projected to become more similar to current cocoa locations. 

 

Figure 7 Mean suitability score change for cocoa production under 2050s climate conditions (RCP 6.0). 



The changes of suitability score differed between major cocoa regions (Figure 8). To compare the change 

of suitability score we restricted analysis to highly suitable locations. The median suitability score change 

was -9%. Locations with suitability scores more negative would be relatively worse affected by climatic 

change than locations with a higher value.  
 

 

Figure 8 Suitability score changes in highly suitable areas for macro-regions. The dot represents the median 

change, the thick vertical bars the interquartile range and whiskers show the 90% confidence interval. The body 

shows the density. The horizontal line is the global median value. 

Central and South American, West African and Southern Asian locations would likely be relatively worse 

off in the climate change scenario. Caribbean, Middle and Eastern Africa and South East Asia may be 

relative beneficiaries of climate change. The West Africa region was found to have the most negative 

suitability score changes. Middle African locations were found to be most likely to see neutral or positive 

suitability score changes (Figure 8).   

Discussion 
Across the most important cocoa origins decreases of climatic suitability were projected. We found that 

available area of high suitability will be diminished while area with low suitability scores may be 

increasingly available. Furthermore, we found that projected impacts will be unlikely to make major 

cocoa producing regions unsuitable altogether. These findings may be partially explained with the high 

uncertainty of precipitation projections of global climate models.  

Most of the positive suitability changes were found in regions that hold high forest cover (Hansen et al. 

2013). In the past cocoa has been closely associated with deforestation (Ruf and Schroth 2004). Regional 

climatic change could not be shown to drive deforestation (Ruf et al. 2015) but it seems to naïve to rule 

such effects out given the formidable task to adapt to climate change. However, to date it is difficult to 

quantify the effect of cocoa-driven deforestation e.g. in Congo (Beule et al. 2014). 

Our modeling approach was a comparison of the distribution of climate zones in which cocoa is currently 

produced and their distribution under future climate scenarios. This means that we considered the 

adaptive range currently available in globally, but not a possible expansion of this range by novel 

technologies or technology transfer from other countries. Adoption of adaptive agricultural practices (e.g. 

novel varieties, irrigation, or shading) that expand the climatic range under which cocoa may be produced 

profitably may result in alternative developments of the distribution of cocoa in the future.  

Equally, climate is usually defined as a multi-decadal average of weather conditions. Thus, when this 

study compares climate across time it takes into account monthly average temperature and precipitation 

over three decades. Global climate models were often not in agreement even at this temporal scale. We 

therefore did not look at more detailed analysis of climate variables even where they are important for on-

farm decision making. Also, projections about the variability between years as may happen from 

increasing frequencies of ENSO have not been considered. For many farmers two consecutive years with 



low harvests may be more decisive even if the decadal average harvest is sufficient (Thornton et al. 

2014). To answer these concerns additional research should be considered.  

We conclude that cocoa production will continue to threaten biodiverse forests across tropical countries. 

Cocoa production is a primary beneficiary of ecosystem services provided by resilient landscapes. 

Deforestation will exacerbate the effects of climate change by resulting in locally reduced precipitation, 

addition to emissions from land use change, and diminished barriers to pest and disease spread. Efforts to 

make cocoa deforestation free are therefore in the self-interest of the cocoa sector.  
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